GROUND DEFORMATION DUE TO STEAM CAP PROCESSES AT REYKJANES, SW-ICELAND: EFFECTS OF GEOTHERMAL EXPLOITATION INFERRED FROM INTERFEROMETRIC ANALYSIS OF SENTINEL-1 IMAGES 2015-2017

Mylène Receveur (1), Freysteinn Sigmundsson (1), Vincent Drouin (1,2), Michelle Parks (3)

(1) Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland
(2) National Land Survey of Iceland, Akranes, Iceland
(3) Icelandic Meteorological Office

myr2@hi.is
Final Master project
Highlights

• Time series analysis from 2015 to 2017 using Interferometric analysis of C-band Sentinel-1A and Sentinel-1B data

• Determination of the parameters for the deformation source using probabilistic inversion

• Models of deformation processes, considering pressure/temperature and production data
- High temperature geothermal system
- 17 production and 5 injection wells in 2015-2017
- Commissioning of the 100 Mwe power plant in 2006

Average yearly next extraction of geothermal fluid 1970-2016 (Vatnaskil report, 2017)

Pressure (bar) 2006-2017

Source: HS-Orka; Thorvaldsson & Arnarsson, Vatnaskil report, 2017; Khodayar et al., 2016
Inferred cumulative vertical displacement: -0.26 m

Contraction towards the center of deflation: 0.14 m.

2005-2008
Envisat T173: -33 mm/yr
Envisat T138: -28 mm/yr

2009-2016
TSX T26: -24 mm/yr
TSX T110: -21 mm/yr

2005-2016
Inferred cumulative vertical displacement: -0.26 m
Contraction towards the center of deflation: 0.14 m.

Parks et al. (2018)
Sentinel-1 mission: two satellites, two tracks

- 104 and 107 Single Look Complex images from T16 and T155 between October 2014 – January 2018
- 1 image every 12 days, 5 x 20 m resolution
- Processing: ISCE software

\[
d_{LOS} = -\bar{d} \cdot \bar{u}
\]

\[
\bar{u}_{T16} = [-0.545 \ 0.123 \ 0.830]
\]

\[
\bar{u}_{T155} = [0.605 \ 0.123 \ 0.787]
\]

Geometry for ascending and descending near-polar orbits.

Projection of heading \(h \) and LOS vectors \(l \) onto the ground plane (Wortham, 2014).
Perpendicular baseline

- 40 interferograms
- 804 days

- 47 interferograms
- 942 days
Velocity maps

- Resolution: 40 x 40 m
- Sub-circular subsidence bowl centered on the most productive area (Gunnuhver hot spring)
- Linear deformation: 16 mm/yr in the satellite LOS

Time series analysis for a set of point situated in the center of the most deforming area (black squares):
Decomposition into near-vertical and near-east displacement components

\[
n_U = \frac{dA + dD}{1.617}
\]

\[
n_E = \frac{dA - dD}{-1.149}
\]

Near-vertical:
- \(-25\) mm/yr
- +4 mm/yr

Near-east:
- +4 mm/yr
- -10 mm/yr
Horizontal Okada sill with uniform closing and contracting penny shaped crack

- Input: LOS average velocity maps
- Contraction of a rock body under pressure change in a homogeneous, isotropic and elastic half-space
- 5 model parameters
- Results: source at 1 km depth closing by a constant rate of 4 cm/yr or a volume change $\Delta V = 0.9 \times 10^5 m^3/yr$
Relation between deformation sources and geological structure

Reservoir volume: 3.8 km3
Average reservoir thickness: 2 km
Micro-scale porosity: 15%
Steam cap thickness: 300-400 m
Steam cap volume: 0.6-0.8 km3

(modified from Friðleifsson et al., 2014; Khodayar et al., 2016)
\[dv = \left(\frac{dv}{dT} \right) dT + \left(\frac{dv}{dP} \right) dP = v\alpha dT - v\beta dP \]

\[\Delta V_{tot(2005-2017)} = -3.9 \times 10^6 m^3 \]

\(v \): specific volume

\(P \): Pressure

\(T \): Temperature

\(\alpha \): Coefficient of thermal expansion

\(\beta \): Uniaxial poro-elastic expansion coefficient
In a Penny shaped crack

\[\Delta P = \frac{\mu}{2a^3} \Delta V \]

\[\Delta V_{PSC} = -0.7 \times 10^5 m^3/yr \]

with \(a = 700 m \)

\(\mu = (1 - 20) GPa \)

\(\Delta P = 0.1 \) to \(2 \) MPa/yr

\(\Delta P = 0.15 \) MPa/yr if \(\mu = 1.5 \) GPa

1) Pressure change

2) Cooling within a horizontal layer

3) Delayed rock compaction
In the Okada layer
\[\Delta h = \gamma \alpha h \Delta T \]
\[= -0.04 \text{ m/yr} \]

With \(\gamma \alpha = (1 - 5) \times 10^{-5} \circ C^{-1} \)

If \(h = 400 \text{ m} \)
\(\Delta T = -10 \text{ to } -2 \circ C/\text{yr} \)

If \(\Delta T = -4 \circ C/\text{yr} \)
\(h = 200 \text{ to } 1000 \text{ m} \)

1) Pressure change
2) Cooling within a horizontal layer
3) Delayed rock compaction

\(dv = \left(\frac{dv}{dT} \right) dT + \left(\frac{dv}{dP} \right) dP = v\alpha dT - v cdP \)
Non-linear relationship between pressure and volume change

Change in isothermal compressibility (steam zone)

\[\Delta V = c \Delta PV \]

Source: Thorvaldsson & Arnarsson, Vatnaskil report, 2017; Khodayar et al., 2016

\[c = 1 \times 10^{-9} \text{Pa}^{-1} \]

\[c = 2 \times 10^{-10} \text{Pa}^{-1} \]

\[\Delta V_{\text{tot}(2005-2017)} = \Delta V_{\text{reservoir}} + \Delta V_{\text{steam cap}} = -2.6 \times 10^6 - 1.3 \times 10^6 = -3.9 \times 10^6 \text{m}^3 \]
Conclusion

- Sentinel-1 InSAR successfully captures deformation at Reykjaness using only two years of data. Ideal location at Reykjaness (flat & vegetation free area)

- Decrease in the rate of volume change:
 - 2006-2009: -7.3×10^5 m3/yr
 - 2009-2016: -1.5×10^5 m3/yr
 - 2015-2017: -0.9×10^5 m3/yr

- Migration of the modelled source from about 2.2 km to 1 km depth

- Change in subsidence pattern

- Combination of pressure, temperature and compressibility change in steam cap can explain 2015-2017 deformation

Future

- Numerical modeling of deformation processes
- Use geodetic studies to guide reinjection and preservation of the steam cap
Thank you!

QUESTIONS?
References

